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Transverse spectra of both jets and hadrons obtained in high-energy pp and pp̄ collisions at central
rapidity exhibit power-law behavior of 1=pn

T at high pT . The power index n is 4–5 for jet production and is
6–10 for hadron production. Furthermore, the hadron spectra spanning over 14 orders of magnitude down
to the lowest pT region in pp collisions at the LHC can be adequately described by a single nonextensive
statistical mechanical distribution that is widely used in other branches of science. This suggests indirectly
the possible dominance of the hard-scattering process over essentially the whole pT region at central
rapidity in high-energy pp and pp̄ collisions. We show here direct evidences of such a dominance of the
hard-scattering process by investigating the power indices of UA1 and ATLAS jet spectra over an extended
pT region and the two-particle correlation data of the STAR and PHENIX collaborations in high-energy pp
and pp̄ collisions at central rapidity. We then study how the showering of the hard-scattering product
partons alters the power index of the hadron spectra and leads to a hadron distribution that may be cast
into a single-particle nonextensive statistical mechanical distribution. Because of such a connection, the
nonextensive statistical mechanical distribution may be considered as a lowest-order approximation of
the hard-scattering of partons followed by the subsequent process of parton showering that turns the jets
into hadrons, in high-energy pp and pp̄ collisions.
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I. INTRODUCTION

The transverse momentum distributions of jets and
hadrons provide useful information on the collision mech-
anisms and their subsequent dynamics. The transverse
spectra of jets in high-energy pp and pp̄ experiments at
high pT and central rapidity exhibit a power-law behavior
of 1=pn

T with the power index n ∼ 4–5, which indicates that
jets are scattered partons produced in relativistic hard-
scattering processes [1–13]. On the other hand, the power
index for hadron spectra are in the range of 6 to 10, slightly
greater than those for jets [2,9–13], revealing that hadrons
are showering products from jets, and the hadron spectra
are modified from the jet spectra but retain the basic power-
law structure of the jet spectra. It was found [11–15]
recently that the hadron spectra spanning over 14 decades
of magnitude from the lowest to the highest pT at central
rapidity can be adequately described by a single nonex-
tensive statistical mechanical distribution that is widely
used in other branches of sciences [16,17],

FðpTÞ ¼ A
�
1 − ð1 − qÞpT

T

�
1=ð1−qÞ

: ð1Þ

Such a distribution with q ¼ 1þ 1=n is phenomenologi-
cally equivalent to the quasi–power law interpolating
formula introduced by Hagedorn [18] and others [19]

FðpTÞ ¼ A

�
1þ pT

p0

�
−n
; ð2Þ

for relativistic hard scattering. Both Eqs. (1) and (2) have
been widely used in the phenomenological analysis of
multiparticle productions; cf., for example, Refs. [20–28]
and references therein.
It is of interest to know why such a nonextensive

statistical mechanical distribution [Eq. (1)] may be a useful
concept for hadron production. It may also be useful to
contemplate its possible implications. The shape of the
spectrum reflects the complexity, or conversely the sim-
plicity, of the underlying production mechanisms. If there
are additional significant contributions from other mech-
anisms, the specification of the spectrum will require
degrees of freedom additional to those of the relativistic
hard-scattering model. The small number of apparent
degrees of freedom of the spectrum over such a large
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pT region1 suggests the possible dominance of the hard-
scattering process over essentially the whole region of pT at
central rapidity [11–14].
The counting of the degrees of freedom provides merely

an indirect evidence for the dominance of the hard-
scattering process over the whole pT region. We would
like to search for direct evidences for such a dominance in
three different ways. The hard scattering process is char-
acterized by the production of jets whose transverse spectra
carries the signature of the power index of n ∼ 4–5 at
central rapidity [12–14]. The relevant data come from
well-defined jets with transverse momenta greater than
many tens of GeV obtained by the D0, ALICE, and CMS
collaborations [29–31]. To seek direct supporting evidences
of jet production by the hard-scattering process over the
lower-pT region, we examine the experimental UA1 and
ATLAS data which give the invariant cross sections for the
production of jets from the lower-pT region (of a few GeV)
to the high-pT region (up to 150 GeV) [32,33]. If the power
index n of the UA1 and ATLAS jet spectra at central
rapidity is close to 4–5, it will constitute a direct evidence
of the dominance of the hard-scattering process over the
extended pT region, for pp̄ and pp collisions at high
energies. In such an analysis, we need to take into account
important pT dependencies of the structure function and
the running coupling constant by refining the analytical
formula of the hard-scattering integral.
The hard-scattering process is characterized by the

production of jets as angular clusters of hadrons. We
can seek additional direct evidences for the dominance of
the hard-scattering process by searching for hadron
angular clusters on the near side using the two-particle
correlation data in high-energy pp collisions from the
STAR and PHENIX collaborations [34–43]. Two-particle
angular correlation data are specified by the azimuthal
angular difference Δϕ and the pseudorapidity difference
Δη of the two particles. If hadrons associated with a low-
and high-pT trigger are correlated at ðΔϕ;ΔηÞ ∼ 0 on the
near side, it will constitute an indication of the dominance
of the hard-scattering process over essentially the whole
pT region.
Finally, the hard-scattering process is characterized by

the production of two jets of particles. We can seek an
additional direct evidence for the other partner jet by
searching for angular clusters of associated hadrons on
the away side in two-particle correlation data from the
STAR and PHENIX collaborations [34–43]. A ridge of

hadrons on the away side at Δϕ ∼ π associated with a
low-pT and high-pT trigger will indicate the production of
the partner jet by the hard-scattering process over the
whole pT region.
While our search has been stimulated by the simplicity of

the hadron pT spectrum, it should be mentioned that the
importance of the production of jets with pT of a few GeV
(minijets) has already been well emphasized in the earlier
work of Ref. [7], and the production of the low-pT jet
(minijets) in the low-pT region has been pointed in the
work of Refs. [38–41]. We are seeking here a synthesizing
description linking these advances together into a single
and simplifying observation on the dominance of the hard
scattering over the whole pT region, with a special
emphasis on the production mechanism. Such a comple-
mentary and synthesizing viewpoint may serve the useful
purposes of helping guide our intuition and summarizing
important features of the collision process.
After examining the experimental evidences for the

dominance of the relativistic hard-scattering process, we
would like to understand how jets turn into hadrons and
in what way the jet spectra evolves to become the hadron
spectra by parton showering. Our understanding may
allow us to bridge the connection between the hard-
scattering process for jet production and its approximate
representation by a nonextensive statistical mechanical
distribution for hadron production. In consequence, the
dominance of the hard-scattering process may allow the
nonextensive statistical mechanical distribution to
describe the observed hadron transverse spectra spanning
the whole pT region at central rapidity, in pp collisions
at the LHC.
In this paper, we restrict our attention to the central

rapidity region at η ∼ 0 and organize the paper as follows.
In Sec. II, we review and refine the analytical results for the
relativistic hard-scattering process. We use the analytical
results to analyze the D0, ALICE, and CMS spectra for
high-pT jets in Sec. III. We note that jet spectra carry the
signature of the hard-scattering process with a power index
n ∼ 4–5 at central rapidity. In Sec. IV, we study the UA1
and ATLAS data which extend from the low-pT region of a
few GeV to the high-pT region up to 150 GeV. We find that
the power index for jet production is approximately 4–5,
supporting the dominance of the hard-scattering process
over the extended pT region at central rapidity. In Sec. V,
we seek additional evidences of the hard-scattering process
from two-particle correlation data. In Sec. VI, we study the
effects of parton showering on the evolution of the jet
spectra to the hadron spectra. In Sec. VII, we examine the
regularization and further approximation of the relativistic
hard-scattering integral to bring it to the form of the
nonextensive statistical mechanics. In Sec. VIII, we analyze
hadron spectra using the nonextensive statistical mechani-
cal distribution. We present our concluding summary and
discussions in Sec. IX.

1There are only three degrees of freedom in Eq. (1): A, q (or
equivalently n), and T. Notice that three degrees of freedom are
almost the minimum number to specify a spectrum. Our spectrum
is therefore very simple. It is interesting therefore that the
counting of the degrees of freedom in our case can lead to the
suggestion of possible hard-scattering dominance and the suc-
cessful search for supporting direct evidences as we describe in
the present work.
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II. APPROXIMATE HARD-SCATTERING
INTEGRAL

Wewould like to review and summarize the results of the
hard-scattering integral obtained in our earlier works in
Refs. [8,12–14,44] so that we can refine previous analytical
results. We consider the collision of A and B in the center-
of-mass frame at an energy

ffiffiffi
s

p
with the detected particle c

coming out at η ∼ 0 in the reaction Aþ B → cþ X as a
result of the relativistic hard-scattering of partons a from
A with parton b from B. Upon neglecting the intrinsic
transverse momentum and rest masses, the differential
cross section in the lowest-order parton-parton elastic
collisions in perturbative quantum chromodynamics
(pQCD) is given by

Ecd3σðAB → cXÞ
dc3

¼
X
ab

Z
dxadxbGa=AðxaÞGb=BðxbÞ

×
Ecd3σðab → cX0Þ

dc3
; ð3Þ

where we use the notations from Ref. [12] with c being
the momentum of the produced parton, xa and xb the
forward light-cone variables of colliding partons a and b in
A and B, respectively and dσðab → cX0Þ=dt the parton-
parton invariant cross section.
We are interested in the production of particle c at

θCM ¼ 90° for which analytical approximate results can be
obtained. We integrate over dxa in Eq. (3) by using the
delta-function constraint in the parton-parton invariant
cross section, and we integrate over dxb by the saddle-
point method to write

½xa0Ga=AðxaÞ�½xb0Gb=BðxbÞ� ¼ efðxbÞ: ð4Þ
We expand fðxbÞ about its minimum at xb0. We obtain

Z
dxbefðxbÞgðxbÞ ∼ efðxb0Þgðxb0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

−∂2fðxbÞ=∂x2bjxb¼xb0

s
:

For simplicity, we assume Ga=A and Gb=B to have the same
form. At θc ∼ 90° in the c.m. system, the minimum value of
fðxbÞ is located at

xb0 ¼ xa0 ¼ 2xc; and xc ¼
cTffiffiffi
s

p : ð5Þ

We get

EC
d3σðAB → cXÞ

dc3
∼
X
ab

B½xa0Ga=Aðxa0Þ�½xb0Gb=Bðxb0Þ�

×
dσðab → cX0Þ

dt
; ð6Þ

where

B ¼ 1

πðxb0 − c2T=xcsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

−∂2fðxbÞ=∂x2bjxb¼xb0

s
: ð7Þ

For the case of xaGa=AðxaÞ ¼ Aað1 − xaÞga , we find

−
∂2fðxbÞ
∂x2b

����
xb¼xb0

¼ 2gð1 − xcÞ
xcð1 − xa0Þð1 − xb0Þ

; ð8Þ

and we obtain2

EC
d3σðAB → cXÞ

dc3
∼
X
ab

AaAb
ð1 − xa0Þgaþ1

2ð1 − xb0Þgbþ1
2ffiffiffiffiffiffiffi

πga
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xcð1 − xcÞ
p

×
dσðab → cX0Þ

dt
: ð9Þ

The above analytical result differs from the previous result
of Eq. (9) of Ref. [12], where the factor that appears in the
above equation

ð1 − xa0Þ12ð1 − xb0Þ12=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − xcÞ

p
ð10Þ

was approximated to be unity. We wish to retain such a
factor in order to obtain a more accurate determination of
the power index, in cases where cT may be a substantial
fraction of

ffiffiffi
s

p
.

If the basic process is gg → gg, the cross section at
θc ∼ 90° [45] is

dσðgg → ggÞ
dt

∼
9πα2s
16c4T

�
3

2

�
3

: ð11Þ

If the basic process is qq0 → qq0, the cross section at
θc ∼ 90° [45] is

dσðqq0 → qq0Þ
dt

¼ 4πα2s
9c4T

5

16
: ð12Þ

If the basic process is gq → gq0, the cross section at
θc ∼ 90° [45] is

dσðgq → gqÞ
dt

¼ 5πα2s
4c4T

11

36
: ð13Þ

In all cases, the differential cross section varies as
dσðab → cX0Þ=dt ∼ α2s=ðc2TÞ2.

III. THE POWER INDEX IN JET
PRODUCTION AT HIGH pT

Our earlier investigation on the effects of multiple
collisions indicates that without a centrality selection in
minimum-biased events, the differential cross section for

2In Eq. (23) of the earlier work of Ref. [12], there was a
typographical error in the quantity xb0 in the denominator under
the square root sign, which should be xc.
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the production of partons at high pT will be dominated
by the contribution from a single parton-parton scattering
that behaves as 1=c4T [12,46–49]. It suffices to consider
only the results of the single parton-parton collision as
given in Eq. (9) which can be compared directly with the
transverse differential cross sections for hadron jet and
isolated photon production.
From the results in the parton-parton cross sections in

Eqs. (11), (12), and (13), the approximate analytical
formula for the hard-scattering invariant cross section
σinv, for Aþ B → cþ X at η ∼ 0, is

Ec
d3σðAB → cXÞ

dc3

����
η∼0

∝
α2sð1 − xa0ðcTÞÞgaþ1

2ð1 − xb0ðcTÞÞgbþ1
2

c4T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cT=

ffiffiffi
s

pp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xcðcTÞ

p : ð14Þ

We analyze the cT spectra by using a running coupling
constant

αsðQðcTÞÞ ¼
12π

27 lnðCþQ2=Λ2
QCDÞ

; ð15Þ

where ΛQCD is chosen to be 0.25 GeV to give
αsðM2

ZÞ ¼ 0.1184 [50], and the constant C is chosen to
be 10, both to give αsðQ ∼ ΛQCDÞ ∼ 0.6 in hadron spec-
troscopy studies [51] and to regularize the coupling
constant for small values of QðcTÞ. We identify Q as cT
and search for n by writing the invariant cross section for jet
production as

σinv ≡ Ec
d3σðAB → cXÞ

dc3

����
η∼0

¼ Aα2sðQ2ðcTÞÞð1 − xa0ðcTÞÞgaþ1
2ð1 − xb0ðcTÞÞgbþ1

2

cnT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xcðcTÞ

p ;

ð16Þ
where the power index n for perturbative QCD has the
value of 4.5.
We identify the parton c with the produced jet and

we define the jet transverse rapidity yT as the logarithm
of cT=

ffiffiffi
s

p
,

yT ¼ ln

�
cTffiffiffi
s

p
�
; eyT ¼ cTffiffiffi

s
p ; ð17Þ

then the results in Eq. (16) gives

∂ lnσinv
dyT

¼ ∂αs
dyT

−
2ðgaþ gbþ 1ÞeyT

1− 2eyT
−nþ eyT

2ð1− eyT Þ ; ð18Þ

and

∂2 lnσinv
dy2T

¼ ∂2αs
dy2T

−
2ðgaþ gbþ 1ÞeyT

ð1− 2eyT Þ2 þ eyT

2ð1− eyT Þ2 : ð19Þ

Therefore in the (ln σinv)-(ln ETðcTÞ) plot in Fig. 1, the
slope ð∂ ln σinv=dyTÞ at small values of ET gives approx-
imately the power index n and the second derivative of
ln σinv with respect to ln ET at large values of ET gives
approximately the power index ga þ gb of the structure fun-
ction. The exponential index ga ¼ gb for the structure
function of a gluon varies from 6 to 10 in different structure
functions [5,52]. We shall take ga ¼ 6 from Ref. [5].
With our refinement of the hard-scattering integral in

Eq. (9), our analytical invariant cross section of Eq. (16)
differs from that in our earlier work in Ref. [12] in the
presence of an extra energy- and pT-dependent factor of
Eq. (10) and a slightly different running coupling constant.
We shall reexamine the power indices with Eq. (16). We
wish to obtain a more accurate determination of the power
indices, in cases where cT may be a substantial fraction of
the collision energy

ffiffiffi
s

p
. We also wish to use Eq. (16) to

calibrate the signature of the power indices for jets at high
pT , where jets can be better isolated, to test in the next
section the power indices for jets extending to the lower-pT
region, where jets are more numerous and harder to isolate.
Using Eq. (16), we find that the dσ=dηETdET jη∼0 data

from the D0 Collaboration [29] for hadron jet production
within jηj < 0.5 can be fitted with n ¼ 4.39 for p̄p
collisions at

ffiffiffi
s

p ¼ 1.8 TeV, and with n ¼ 4.47 for p̄p
collisions at

ffiffiffi
s

p ¼ 0.630 TeV, as shown in Fig. 1.
In another comparison with the ALICE data for jet

production in pp collisions at
ffiffiffi
s

p ¼ 2.76 TeV at the LHC
within jηj < 0.5 [30] in Fig. 2, the power index is n ¼ 4.78
for R ¼ 0.2, and is n ¼ 4.98 for R ¼ 0.4 (Table I).
In Fig. 3, the power index is n ¼ 5.39, for the CMS jet
differential cross section in pp collisions at

ffiffiffi
s

p ¼ 7 TeV at
the LHC within jηj < 0.5 and R ¼ 0.5 [31].
The power indices extracted from the hadron jet spectra

from the D0 [29,30], and CMS collaborations [31] are
listed in Table I. The extracted D0 power indices are smaller
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FIG. 1 (color online). Comparison of the relativistic hard-
scattering model results for jet production, Eq. (16) (solid
curves), with experimental dσ=dηETdET jη∼0 data from the D0
Collaboration [29], for hadron jet production within jηj < 0.5, in
p̄p collisions at (a)

ffiffiffi
s

p ¼ 1.80 TeV, and (b)
ffiffiffi
s

p ¼ 0.63 TeV.
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than those extracted previously in Ref. [12] by 0.2 units, as
the highest transverse momenta are substantial fractions of
the collision energy. In the other cases, the change of the
power indices from our earlier work in Ref. [12] are small
as their highest transverse momenta are substantially
smaller than the collision energies.
With the jet spectra at high pT from the D0, ALICE and

CMS collaborations, we find that the signature for jet
production is a power index in the range of 4.5 to 5.4, with a
small variation that depends on

ffiffiffi
s

p
and R as shown in

Table I. While these power indices are close to the lowest-
order pQCD prediction of 4.5, there appears to be a
consistent tendency for n to increase slightly as

ffiffiffi
s

p
and

R increase. Such an increase may arise from higher-order
pQCD effects. We can envisage the physical picture that

as the jet evolves by parton showering, the number of
generations of parton branching will increase with a greater
collision energy

ffiffiffi
s

p
or a greater opening angle R. A greaterffiffiffi

s
p

or a larger R value corresponds to a later stage of the
evolution of the parton showering and they will lead
naturally to a slightly greater value of the power index n.
The signature of the power indices for the production of

jets at high pT can be used to identify the nature of the jet
production process at low pT. If the power indices in the
production in the lower-pT region are similar, then the jets
in the lower-pT region and the jets in the high-pT region
have the same spectral shape and can be considered to
originate from the same production mechanism, extending
the dominance of the relativistic hard-scattering process to
the lower-pT region.

IV. JET PRODUCTION IN AN EXTENDEDREGION
FROM LOW TO HIGH pT

The analysis in the last section was carried out for jets
with a transverse momentum greater than 19 GeV. It is of
interest to find out whether the perturbative QCD power
index remains a useful concept when we include also the
production of jet-like energy clusters (minijets) at lower
transverse momenta. In order to apply the power law (16)
to the whole range of cT , we need to regularize it by the
replacement,3

1

c2T
→

1

1þm2
T=m

2
T0

; ð20Þ

or alternatively as

1

cT
→

1

1þmT=mT0
: ð21Þ

The quantity mT0 measures the average transverse mass
of the detected jet in the hard-scattering process. Upon
choosing the regularization (20), the differential cross
section d3σðAB → pXÞ=dydpT in Eq. (16) is then regu-
larized as

d3σðAB → pXÞ
dydpT

����
y∼0

∝
α2sðQ2ðcTÞÞð1 − xa0ðcTÞÞgaþ1=2ð1 − xb0ðcTÞÞgbþ1=2

½1þm2
TðcTÞ=m2

T0�n=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xcðcTÞ

p :

ð22Þ
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FIG. 2 (color online). Comparison of the relativistic hard-
scattering model results for jet production, Eq. (16) (solid
curves), with experimental dσ=dηETdET jη∼0 data from the
ALICE Collaboration [30], for jet production within jηj < 0.5,
in pp collisions at 2.76 TeV for R ¼ 0.4, and R ¼ 0.2.
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FIG. 3. Comparison of the relativistic hard-scattering model
results for jet production, Eq. (16) (solid curves), with exper-
imental dσ=dηETdET jη∼0 data from the CMS Collaboration [31],
for jet production within jηj < 0.5, in pp collisions at 7 TeV.

3So far, the only rationale behind this is that, in the QCD
approach, large-cT partons probe small distances (with small
cross sections). With a diminishing of cT , these distances become
larger (and cross sections increase) and, eventually, they start to
be of the order of the nucleon size (actually it happens around
cT ≃ cT0 ∼ 1=rnucleon or mT ≃mT0). At that point the cross
section should stop rising, i.e., it should not depend anymore
on the further decrease of the transverse momentum cT . The scale
parameter mT0 can then be identified with mT0 here. A similar
idea was employed when proposing Eq. (15).
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In Fig. 4, we present the fits of the inclusive UA1 jet cross
sections at η ∼ 0 [32] as a function of the jet pT for pp̄
collisions with the above equation, and we find that n ¼
4.47 and mT0 ¼ 0.267 GeV for pp̄ collisions atffiffiffi
s

p ¼ 564 GeV, and n ¼ 4.73 and mT0 ¼ 0.363 GeV for
pp̄ collisions at

ffiffiffi
s

p ¼ 630 GeV.
The ATLAS pT spectra for pp collisions at 7 TeV also

extend to the region of a few GeV. It is of interest to find out
what are the power indices for these collisions. We show in
Fig. 5 the comparison of the results of Eq. (22) with the
ATLAS data at η ∼ 0 [33]. We find that n ¼ 5.03 for
R ¼ 0.4 and n ¼ 5.29 for R ¼ 0.6. For this case of pp
collisions at 7 TeV, because the data start with pT of a few
GeV, the fits and the extracted value ofn are insensitive to the
variation of themT0 values so that there is an ambiguity in the
product of the normalization andmT0 in the analysis. The fits
inFig.5havebeenobtainedwithmT0 ¼ 1 GeV.Thevalueof
n is is related to the slope of the curves in Fig. 5.
We list in Table II the power indices extracted from

UA1 and ATLAS for the extended pT region from a few
GeV to the high-pT region. It should be mentioned that the
importance of the production of jets with pT of a few GeV

(minijets) has already been emphasized in the earlier work
of Ref. [7].
By comparing the power indices obtained in Table I for

D0, ALICE, and CMS for jets at high pT with those for
UA1 and ATLAS for jets in the lower-pT region in Table II,
we note that these power indices are very similar. The
corresponding power index values are nearly the same, and
the changes of the power index with respect to

ffiffiffi
s

p
andR are

nearly the same. They can be considered to originate from
the same relativistic hard-scattering mechanism, indicating
the dominance of the hard-scattering process over the
extended pT region from a few GeV to about 100 GeV.

V. ADDITIONAL EVIDENCES OF JET
PRODUCTION FROM TWO-PARTICLE

CORRELATION DATA

In addition to the spectral shape, we seek additional
evidences of jet production in the low-pT region from
experimental two-particle correlation measurements, which
consist of correlations on the near side and the away side.
We shall first examine near-side correlations.

TABLE I. The power index n for the jet spectra in p̄p and pp collisions. Here, R is the jet cone angular radius used
in the jet search algorithm.

Collaboration
ffiffiffi
s

p
pT Region R η n

D0 [29] p̄p 1.80 TeV 64 < pT < 461 GeV 0.7 jηj < 0.7 4.39
D0 [29] p̄p 0.63 TeV 22 < pT < 136 GeV 0.7 jηj < 0.7 4.47
ALICE [30] pp 2.76 TeV 22 < pT < 115 GeV 0.2 jηj < 0.5 4.78
ALICE [30] pp 2.76 TeV 22 < pT < 115 GeV 0.4 jηj < 0.5 4.98
CMS [31] pp 7 TeV 19 < pT < 1064 GeV 0.5 jηj < 0.5 5.39
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FIG. 4 (color online). Comparison of the relativistic hard-
scattering model results for jet production, Eq. (22) (solid
curves), with experimental dσ=dηpTdpT data from the UA1
Collaboration [32], for jet production within jηj < 1.5, in p̄p
collisions at (a)

ffiffiffi
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p ¼ 0.546 TeV, and (b)
ffiffiffi
s

p ¼ 0.63 TeV.
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FIG. 5. Comparison of the relativistic hard-scattering model
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p ¼ 7 TeV, with (a) R ¼ 0.4 and (b) R ¼ 0.6.
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The experimental distribution of near-side particles
associated with a trigger particle of momentum ptrig

T in
pp collisions can be described well by [42,43]

dNpp
jet

pTdpTdΔηdΔϕ
¼ Njet

expfðm −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

T

p
Þ=T jetg

T jetðmþ T jetÞ

×
1

2πR2
e−½ðΔϕÞ2þðΔηÞ2�=2R2

; ð23Þ

where by the assumption of hadron-parton duality m can
be taken as the pion mass mπ , Njet is the total number of
near-side (charged) associated particles in a pp collision,
and T jet is the jet inverse slope (“temperature”) parameter of
the “pp jet component.” We find that the parameters Njet
and T jet vary linearly with p

trig
T of the trigger particle which

we describe as

Njet ¼ Njet0 þ dNp
trig
T ; ð24Þ

T jet ¼ T jet0 þ dTp
trig
T : ð25Þ

We also find that the width parameter R depends slightly on
pT which we can parametrize as

R ¼ R0

maffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

a þ p2
T

p : ð26Þ

Using this set of parameters and Eq. (23), we fit the pp
associated particle data obtained in PHENIXmeasurements
for pp collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. The values of the
parameters are given in Table III. As extracted from Fig. 1
of Ref. [43], the theoretical results of dNpp

ch =NtrigdΔϕ from

Eq. (23) are given as solid curves in Fig. 6 and the
corresponding experimental data are represented by open
circles. As one observes in Fig. 6, although the fit is not
perfect, the set of parameters in Table III adequately
describes the set of pp associated particle data for
2 < ptrig

T < 10 GeV and for 0.4 < passoc
T < 4 GeV. As

indicated in Table III, the parameters of Eqs. (24) and (25)
are Njet0 ¼ 0.15, dN ¼ 0.1=GeV, T jet0 ¼ 0.19 GeV, and
dT ¼ 0.06. It is interesting to note that the cone angle R0

for jets in the lower-pT region is of the same order as those
in the high-pT region.
The presence of a well-defined cone of particles asso-

ciated with a pT > 2–3 GeV triggers in Fig. 6 on the near
side and the nonvanishing extrapolation of the jet yield Njet
to the case of a low-pT trigger in Eq. (24) provide an
additional evidence of jet production in the pT trigger >
2 GeV region in high-energy pp collisions. Furthermore,
even in minimum-pT-biased events without a high-pT

TABLE II. The power index n extracted from jet production in p̄p and pp collisions in the extended pT region
from a few GeV to the high-pT region.

Collaboration
ffiffiffi
s

p
pT Region R η n

UA1 [32] p̄p 0.564 TeV 5.5 < pT < 150 GeV 0.75 jηj < 1.5 4.47
UA1 [32] p̄p 0.63 TeV 5.5 < pT < 150 GeV 0.75 jη < 1.5 4.73
ATLAS [33] pp 7 TeV 4.5 < pT < 95 GeV 0.4 jηj < 0.5 5.03
ATLAS [33] pp 7 TeV 4.5 < pT < 95 GeV 0.6 jηj < 0.5 5.29
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FIG. 6. PHENIX azimuthal angular distribution of associated
particles per trigger in different ptrig

t ⊗ passoc
t combinations.

The open circles are the associated particle yields per trigger,
dNch=NtrigdΔϕ, in pp collisions [37]. The solid curves are the
theoretical associated particle yields per trigger calculated
with Eq. (23).

TABLE III. Jet component parameters in Eq. (23) obtained for
the description of experimental near-side associated particles with
different ptrig

t triggers from the STAR [34] and PHENIX [37]
collaborations, in pp collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV.

STAR PHENIX

ptrig
T 4–6 GeV 2–3 GeV 3–4 GeV 4–5 GeV 5–10 GeV

Njet 0.75 0.15þ 0.10 hptrig
T i=GeV

T jet 0.55 GeV 0.19 GeVþ 0.06 hptrig
T i

R0 0.50
ma 1.1 GeV
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trigger, a similar cone of associated correlated particles at
ðΔϕ;ΔηÞ ∼ 0 are present in two-particle correlation data, as
shown in Fig. 7 [35,38–40], indicating the production of
jet-like structure on the near side for low-pT particles.
In addition to the particles associated with the trigger

particle on the near side, there are particles associated with
the trigger particle on the back-to-back, away side at
Δϕ ∼ π, in the form of a ridge along the Δη direction,
both with high-pT [34–36] and low-pT triggers [35,38–40],
for pp collisions at

ffiffiffi
s

p ¼ 200 GeV. Here, the importance
of the production of the low-pT jet (minijets) in the low-pT
region has already been pointed out previously in the work
of Refs. [38–41]. In Fig. 7, (taken from the STAR data in
Fig. 1 of Ref. [39]), we show the two-particle correlation
data in a minimum-pT-biased measurement which corre-
sponds to the case with a low-pT trigger. The two-particle
correlation data in Fig. 7 indicate the presence of (i) a near-
side particle cluster at ðΔϕ;ΔηÞ ∼ 0 (a minijet) and (ii) an
away-side ridge of associated particles at Δϕ ∼ π. The
Δϕ ∼ π (back-to-back) correlation in the shape of a ridge
indicates that the two particles are parts of the partons from
the two nucleons and they carry fractions of the longi-
tudinal momenta of their parents, leading to the ridge of Δη
at Δϕ ∼ π. These two group of particles at Δϕ ∼ 0 and
Δϕ ∼ π can be interpreted as arising from the pair of
scattered partons in a relativistic hard scattering.
The dominance of the hard scattering in the spectrum

does not imply the absence of soft processes. It only
stipulates that the soft process contribution is much smaller
in comparison. In the lowest pT region, one expects
contributions from soft nonperturbative QCD physics that
may involve the parton wave functions in a flux tube [57],
the thermodynamics and the recombination of partons
[18,58–60], or the fragmentation of a QCD string [61–63].
However, as the contributions from the hard-scattering

processes increase with increasing collision energies, the
fraction of the contributions from soft processes becomes
smaller in comparison with the contributions from the hard-
scattering processes, as pointed out earlier in Refs. [7,32].
As a consequence, the contributions from the hard-
scattering process can dominate the particle production
process in high-energy pp and pp̄ collisions.

VI. EFFECTS OF PARTON SHOWERING ON THE
TRANSVERSE DIFFERENTIAL CROSS SECTION

The last sections show the possible dominance of jet
production at central rapidity in high-energy pp and pp̄
collisions over essentially the whole pT region. We would
like to find out how the jets evolve to become hadrons and
how the hadron spectra manifest themselves.
In addition to the jet transverse spectra, experimental

measurements also yield the hadron spectra without the
reconstruction of jets. The hadron transverse spectra give
a slightly greater power index, nhadron ∼ 6–10 [2,9–14].
Previously, we outlined how the increase in the power
index n from jet production to hadron production may arise
from the subsequent parton showering that turns jets into
hadrons [12]. We would like to describe here the evolution
in more detail. To distinguish between jets and their shower
products, we shall use the symbol c to label a parent parton
jet and its momentum and the symbol p to label a shower-
product hadron and its momentum.
The evolution of the parton jet into hadrons by parton

showering has been described well by many models [64].
There are three different parton showering schemes:
PYTHIA [65], HERWIG [66], and ARIADNE [67]. The general
picture is that the initial parton is characterized by a
momentum and a virtuality which measures the degree
of the parton to be off the mass shell. The parton is subject
to initial-state and final-state radiations. After the hard
scattering process, the parton possesses a high degree of
virtuality Qð0Þ, which can be identified with the magnitude
of the parton transverse momentum cT . The final-state
radiation splits the parton into binary quanta as described
by the following splitting Dokshitzer–Gribov–Lipatov–
Altarelli–Parisi (DGLAP) kernels [68]:

Pq→qg ¼
1

3

1þ z2

1 − z
; ð27Þ

Pg→gg ¼ 3
½1 − zð1 − zÞ�2

zð1 − zÞ ; ð28Þ

Pg→qq̄ ¼
nf
2
½z2 þ ð1 − zÞ2�; ð29Þ

where z is the momentum fraction of one of the showered
partons, and there is symmetry between z and 1 − z for
symmetrical products in the second and third processes.
After the showering splitting processes, there is always a
leading parton with
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FIG. 7 (color online). Minimum-pT -biased two-particle angular
correlation, without a pT trigger selection, for charged hadrons
produced in pp collisions at

ffiffiffi
s

p ¼ 200 GeV (from Fig. 1 of
Ref. [39] of the STAR Collaboration). Here, ϕΔ is Δϕ, the
difference of the azimuthal angles of two detected charged
hadrons, and ηΔ is Δη, the difference of their pseudorapidities.
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zleading ≫ znon-leading: ð30Þ

For the study of the pT hadron spectra as a result of the
parton showering, it suffices to focus attention on the leading
parton after each showering splitting because of the rapid
falloff of the transversemomentumdistribution as a function
of increasing cT . As a consequence, we can envisage the
approximation conservation of the leading parton as the
parton showering proceeds and as itsmomentum is degraded
in each showering branching by the fraction hzi ¼ hzleadingi.
In the present study of high-pT particles in the central
rapidity region, the parton c is predominantly along the
transverse direction, and the showering of the produced
hadrons will also be along the transverse direction.
A jet parton cwhich evolves by parton showering will go

through many generations of showering. If we label the

(average) momentum of the ith generation parton by cðiÞT ,

the showering can be represented as cT → cð1ÞT → cð2ÞT →

cð3ÞT → � � � → cðλÞT ¼ pT . Each branching will kinematically
degrade the momentum of the showering parton by a

momentum fraction, hzi ¼ cðiþ1Þ
T =cðiÞT . At the end of the

terminating λth generation of showering, the jet hadronizes
and the pT of a produced hadron is related to the cT of the
parent parton jet by

pT

cT
≡ cðλÞT

cT
¼ hziλ: ð31Þ

It is easy to prove that if the generation number λ and the
fragmentation fraction z are independent of the jet cT , then
the power law and the power index for the pT distribution
are unchanged [12].
We note however that in addition to the kinematic

decrease of cT as described by Eq. (31), the showering
generation number λ is governed by an additional criterion
on the virtuality. From the different parton showering
schemes in PYTHIA [65], HERWIG [66], and ARIADNE

[67], we can extract the general picture that the initial
parton with a large initial virtuality Qð0Þ decreases its
virtuality by showering until a limit of Qcutoff is reached.
The downgrading of the virtuality will proceed as Qjet ¼
Qð0Þ→Qð1Þ→Qð2Þ →Qð3Þ → � � �→QðλÞ ¼Qcutoff , with

hξi ¼ Qðiþ1Þ

QðiÞ and
QðλÞ

Qjet ¼ hξiλ: ð32Þ

The measure of virtuality has been defined in many
different ways in different parton showering schemes. We
can follow PYTHIA [64] as an example. We consider a
parton branching of a → bc. The transverse momentum
along the jet a direction is

b2T ¼ zð1 − zÞa2 − ð1 − zÞb2 − zc2: ð33Þ
If a2 ¼ ½QðiÞ�2 ¼ virtuality before parton branching, and
b2 ¼ c2 ¼ 0, as is assumed by PYTHIA, then

b2T ¼ ½Qðiþ1Þ�2 ¼ zð1 − zÞa2 ¼ zð1 − zÞ½QðiÞ�2: ð34Þ

So, if we identify the transverse momentum b2T along the jet
axis as the square of the virtuality ½Qðiþ1Þ�2 after parton
branching, the quantity zð1 − zÞmeasures the degradation of
the square of the virtuality in each QCD branching process,

½Qðiþ1Þ�2
½QðiÞ�2 ¼ zð1 − zÞ: ð35Þ

Thus, the virtuality fraction of Eq. (32) is related to
hzð1 − zÞi by

hξi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hzð1 − zÞi

p
: ð36Þ

As z is less than 1, hξi < hzi which implies that on the
average the virtuality fraction hξi in a parton branching is
smaller than the momentum fraction hzi. As a consequence,
the virtuality of the leading parton is degraded faster than its
momentum as the showering process proceeds so that when
the virtuality reaches the cutoff limit, the parton still retains a
significant fraction of the initial jet momentum.
The process of parton showering will be terminated when

the virtuality QðλÞ reaches the cutoff value QðλÞ¼Qcutoff , at
which the parton becomes on themass shell and appears as a
produced hadron. This occurs after λ generations of parton
showering. The generation number λ is determined by

λ ¼ ln

�
Qcutoff

Qjet

��
lnhξi: ð37Þ

There is a one-to-one mapping of the initial virtuality Qjet

with the initial jet transverse momentum cT of the evolving
parton as QjetðcTÞ [or conversely cTðQjetÞ]. The cutoff
virtuality Qcutoff maps into a transverse momentum
cT0 ¼ cTðQcutoffÞ. Because of such a mapping, the decrease
in virtualityQ corresponds to a decrease of the correspond-
ing mapped cT . We can infer from Eq. (37) an approximate
relation between cT and the number of generations, λ,

λ ¼ ln

�
QcutoffðcT0Þ
Qð0ÞðcTÞ

��
lnhξi≃ ln

�
cT0
cT

��
lnhξi: ð38Þ

Thus, the showering generation number λ depends on the
magnitude of the jet momentum cT . On the other hand,
kinematically, the showering processes degrade the trans-
verse momentum of the parton cT to that of the pT of the
produced hadron as given by Eq. (31), depending on the
number of generations λ. The magnitude of the transverse
momentum pT of the produced hadron is related to the
transverse momentum cT of the parent parton jet by

pT

cT
¼ hziλ ¼ hzilnð

cT0
cT

Þ=lnhξi: ð39Þ
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We can solve the above equation for pT as a function of cT
and obtain

pT

cT0
¼

�
cT
cT0

�
1−μ

; ð40Þ

and conversely

cT
cT0

¼
�
pT

cT0

�
1=ð1−μÞ

; ð41Þ

where

μ ¼ lnhzi
lnhξi : ð42Þ

In practice μ (or equivalently, the cutoff parameterQcouoff or
cT0

) is a parameter that can be tuned to fit the data. As a result
of the virtuality degradation and virtuality cutoff, the hadron
fragment transverse momentum pT is related to the parton
momentum cT nonlinearly by an exponent 1 − μ.
After the showering of the parent parton cT to the

produced hadron pT , the hard-scattering cross section
for the scattering in terms of the hadron momentum pT
becomes

d3σðAB → pXÞ
dydpT

¼ d3σðAB → cXÞ
dydcT

dcT
dpT

: ð43Þ

Upon substituting the nonlinear relation (41) between the
parent parton moment cT and the produced hadron pT in
Eq. (41), we get

dcT
dpT

¼ 1

1 − μ

�
pT

cT0

� 2μ
1−μ
: ð44Þ

Therefore under the parton showering from c to p, the hard-
scattering invariant cross section σinvðpTÞ for AB → pX for
hadron production becomes

σinvðpTÞ ¼ Ec
d3σðAB → pXÞ

dp3

����
y∼0

¼ d3σðAB → pXÞ
dydpT

����
y∼0

∝
α2sðQ2ðcTÞÞð1 − xa0ðcTÞÞgaþ1

2ð1 − xb0ðcTÞÞgbþ1
2

pn0
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xcðcTÞ

p ;

ð45Þ
where

n0 ¼ n − 2μ

1 − μ
; with n ¼ 4þ 1

2
: ð46Þ

Thus, the power index n for jet production can be
significantly changed to n0 for hadron production because
the greater the value of the parent jet cT , the greater the
number of generations λ to reach the produced hadron, and
the greater the kinematic energy degradation. By a proper
tuning of μ, the power index can be brought to agree with

the observed power index n0 in hadron production. The
quantity μ is related to n0 and n by

μ ¼ n0 − n
n0 − 2

: ð47Þ

For example, for μ ¼ 0.4 one gets n0 ¼ 6.2 and for μ ¼ 0.6
one gets n0 ¼ 8.2.

VII. REGULARIZATION AND FURTHER
APPROXIMATION OF THE

HARD-SCATTERING INTEGRAL

In order to apply the power law (45) to the whole range
of pT for hadron production, we need to regularize it. Upon
choosing the regularization (21), the differential invariant
cross section σinvðpTÞ for the production of a hadron with a
transverse momentum pT becomes

σinvðpTÞ ¼
d3σðAB → pXÞ

dydpT

����
y∼0

∝
α2sðQ2ðcTÞÞð1 − xa0ðcTÞÞgaþ1

2ð1 − xb0ðcTÞÞgbþ1
2

ð1þmT=mT0Þn0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xcðcTÞ

p :

ð48Þ
In the above equation, the variable cTðpTÞ on the right-
hand side refers to the transverse momentum of the parent
jet cT before parton showering as given by Eq. (41),

cTðpTÞ
cT0

¼
�
pT

cT0

�ðn0−2Þ=ðn−2Þ
: ð49Þ

The quantities xa0, xb0, and xc in Eq. (45) are given
by Eq. (5).
We can simplify further the pT dependencies of the

structure function in Eq. (48) and the running coupling
constant as additional power indices in such a way that
will facilitate subsequent phenomenological comparison.
We can cast the hard-scattering integral (48) for hadron
production in the nonextensive statistical mechanical dis-
tribution form

d3σðAB → pXÞ
dydpT

����
y∼0

¼ σinvðpTÞ ∼
A

½1þmT=mT0�n
; ð50Þ

where

n ¼ n0 þ nΔ; ð51Þ

and n0 is the power index after taking into account the
parton showering process, and nΔ is the power index from
the structure function and the coupling constant. We
consider the part of the pT-dependent factor in Eq. (48)

fðpTÞ ¼
α2sðcTðpTÞÞð1 − 2cTðpTÞ=

ffiffiffi
s

p Þgaþgbþ1

½1 − cTðpTÞ=
ffiffiffi
s

p �1=2 ð52Þ
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that is a known function of pT . We wish to match it to a
nonextensive statistical mechanical distribution with a
power index nΔ,

~fðpTÞ ¼
~A

ð1þmTðpTÞ=mT0ÞnΔ
: ð53Þ

We match the two functions at two points, pT1 and pT2,

fðpTiÞ ¼ ~fðpTiÞ; i ¼ 1; 2: ð54Þ
Then we get

nΔ ¼ lnfðpT1Þ− lnfðpT2Þ
lnð1þmTðpT2Þ=mT0Þ− lnð1þmTðpT1Þ=mT0Þ

: ð55Þ

As fðpTÞ is a known function of pT and
ffiffiffi
s

p
, nΔ can in

principle be determined. The total power index n as given
by Eq. (51) is also a function of

ffiffiffi
s

p
.

In reaching the above representation of Eq. (50) for the
invariant cross section for hadrons, we have approximated
the hard-scattering integral σinvðpTÞ that may not be
exactly in the form of A=½1þmT=mT0�n into such a form.
It is theneasy to see that uponmatchingσinvðpTÞwithA=½1þ
mT=mT0�n according to some matching criteria, the hard-
scattering integral σinvðpTÞ will be in excess of A=½1þ
mT=mT0�n in some region, and is in deficit in some other
region. As a consequence, the ratio of the hard-scattering
integral σinvðpTÞ to the fitting A=½1þmT=mT0�n will oscil-
late as a function of pT . This matching between the physical
hard-scattering outcome that contains all physical effects
with the approximation of Eq. (50) may be one of the origins
of the oscillations of the experimental fits with the non-
extensive distribution (as can be seen below in Fig. 8).

VIII. SINGLE-PARTICLE NONEXTENSIVE
DISTRIBUTION AS A LOWEST-ORDER

APPROXIMATION OF THE
HARD-SCATTERING INTEGRAL

In the hard-scattering integral (50) for the hadron
invariant cross section at central rapidity, if we identify

n →
1

q − 1
and mT0 →

T
q − 1

¼ nT; ð56Þ

and consider produced particles to be relativistic so that
mT ∼ ET ∼ pT , then we will get the nonextensive distribu-
tion of Eq. (1) as the lowest-order approximation for the
QCD-based hard-scattering integral.
It is necessary to keep in mind that the outlines leading to

Eqs. (48) and (50) pertain only to average values, as the
stochastic elements and distributions of various quantities
have not been properly taken into account. The convergence
of Eq. (50) and Eq. (1) can be considered from a broader
viewpoint of the reduction of a microscopic description to a
single-particle statistical mechanical description. From the

microscopic perspective, the hadron production in a pp
collision is a very complicated process, as evidenced by the
complexity of the evolutiondynamics in the evaluationof the
pT spectra in explicitMonteCarlo programs, for example, in
Refs. [65–67].There are stochastic elements in thepickingof
the degree of inelasticity, in picking the colliding parton
momenta from the parent nucleons, the scattering of the
partons, the showering evolution of scattered partons, and
the hadronization of the fragmented partons. Some of these
stochastic elements cannot be definitive and many different
models have been put forth. In spite of all these complicated
stochastic dynamics, the final result of Eq. (50) of the single-
particle distribution can be approximated to depend only on
three degrees of freedom, after all is done, put together,
and integrated. The simplification can be considered as a
“no-hair” reduction from the microscopic description to
nonextensive statisticalmechanics inwhich all the complex-
ities in the microscopic description “disappear” and are
subsumed behind the stochastic processes and integrations.
In line with statistical mechanics and in analogy with the
Boltzmann-Gibbs distribution, we can cast the hard-
scattering integral in the nonextensive form in the lowest-
order approximation as [15]4

dσ
dydpT

����
y∼0

¼ 1

2πpT

dσ
dydpT

����
y∼0

¼ Ae−ET=T
q ; ð57Þ

where

e−ET=T
q ≡ ½1 − ð1 − qÞET=T�1=ð1−qÞ;
e−ET=T
1 ¼ e−ET=T:

In the above equation, ET ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2T

p
, where m can be

taken to be the pion mass mπ, and we have assumed boost
invariance in the regionneary ∼ 0. The parameterq is related
physically to the power index n of the spectrum, the
parameter T is related to mT0 and the average transverse
momentum, and the parameterA is related to themultiplicity
(per unity rapidity) after integration over pT. Given a
physically determined invariant cross section in the log-
log plot of the cross section as a function of the transverse
hadron energy as in Fig. 1, the slope at large pT gives
approximately thepower indexn (andq), the averageofET is
proportional toT (andmT0), and the integral overpT givesA.
We can test the above single-particle nonextensive

statistical mechanical description by confronting Eq. (57)
with experimental data. Figure 8 gives the comparisons of
the results from Eq. (57) with the experimental pT spectra
at central rapidity obtained by different collaborations
[53–56]. In these calculations, the parameters of A, q
and the corresponding n and T are given in Table IV. The

4We are adopting the convention of unity for both the
Boltzmann constant kB and the speed of light c.
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dashed line (an ordinary exponential of ET for q → 1)
illustrates the large discrepancy if the distribution is
described by a Boltzmann-Gibbs distribution. The results
in Fig. 8 show that Eq. (57) adequately describes the hadron
pT spectra at central rapidity in high-energy pp collisions.
We verify that q increases slightly with the beam energy,
but, for the present energies, remains always q≃ 1.1,
corresponding to a power index n in the range of 6–10
that decreases as a function of

ffiffiffi
s

p
.

What interestingly emerges from the analysis of the data
in high-energy pp collisions is that the good agreement of
the present phenomenological fit extends to the whole pT
region (or at least for pT greater than 0.2 GeV=c, where
reliable experimental data are available) [11]. This is being
achieved with a single nonextensive statistical mechanical
distribution with only three degrees of freedom with
data-to-fit ratios oscillating about unity as in Fig. 8. Such

an agreement suggests that the nonextensive statistical
mechanical distribution may not only be the phenomeno-
logical description of the end product of the parton
showering evolution from jet to hadrons but may also
have deeper theoretical significance.

IX. SUMMARY AND DISCUSSIONS

The transverse momentum distributions of jets and
hadrons provide complementary and useful pieces of infor-
mation on the collision mechanisms and their evolution
dynamics. The spectra of jets reveal the simple hard-
scattering production mechanism and they carry the distinct
signature with a power index of n ∼ 4–5. On the other
hand, the spectra of hadrons contain additional subsequent
dynamics on the evolution of jets into hadrons but retain
the power-law feature of the hard-scattering process. The
recent description of the hadron transverse spectrum by
a single nonextensive statistical mechanical distribution
leads to the suggestion of the possible dominance of the
hard-scattering process, not only in the high-pT region,
but also over essentially thewholepT region, forpp and p̄p
collisions. The suggestion represents a synthesizing descrip-
tion linking the simplicity of the whole hadron spectrum for
pp collisions with the production of minijets [7] at pT of a
few GeV and the production of minijets at low pT [38–41]
into a single simplifyingobservationon the dominance of the
hard scattering over the whole pT region in pp collisions,
with a special emphasis on the production mechanism.
We have searched for direct supporting evidences for the

dominance of the hard-scattering process in the whole pT
region at central rapidity. The first piece of evidence has
been found by studying the power index for jet production
in the lower-pT region in the UA1 and ATLAS data in high-
energy p̄p and pp collisions, where the power index is
indeed close to 4–5, the signature of pQCD jet production.
The dominance of the hard-scattering process for the
production of a low-pT hadron in the central rapidity
region is further supported by two-particle correlation data
where associated particles are correlated on the near side
at ðΔϕ;ΔηÞ ∼ 0, with a minimum-pT-biased or a high-pT
trigger, indicating the production of angular clusters in
essentially the whole range of pT . Additional evidence has
been provided by the two-particle correlation on the away
side at Δϕ ∼ π, with a minimum-pT-biased or a high-pT
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FIG. 8 (color online). Comparison of Eq. (57) with the
experimental transverse momentum distribution of hadrons in
pp collisions at central rapidity y. The corresponding Boltzmann-
Gibbs (purely exponential) distribution is illustrated as the dashed
curve. For a better visualization, both the data and the analytical
curves have been divided by a constant factor as indicated. The
ratios of data/fit are shown at the bottom, where a roughly log-
periodic behavior is observed on top of the q-exponential one.
Data are taken from Refs. [53–56].

TABLE IV. Parameters used to obtain fits presented in Fig. 8. The values of A is in units of GeV−2=c3.

Collaboration
ffiffiffi
s

p
A q n ¼ 1=ðq − 1Þ T ðGeVÞ

CMS [53] pp at 7 TeV 16.2 1.151 6.60 0.147
ATLAS [54] pp at 7 TeV 17.3 1.148 6.73 0.150
CMS [53] pp at 0.9 TeV 15.8 1.130 7.65 0.128
ATLAS [54] pp at 0.9 TeV 13.6 1.124 8.09 0.140
ALICE [55] pp at 0.9 TeV 9.95 1.119 8.37 0.150
UA1 [56] p̄p at 0.9 TeV 13.1 1.109 9.21 0.154
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trigger, where a produced hadron has been found to
correlate with a “ridge” of particles along Δη [35,38–41].
The Δϕ ∼ π correlation indicates that the correlated pair is
related by a collision, and the Δη correlation in the shape
of a ridge indicates that the two particles are partons from
the two nucleons and they carry different fractions of the
longitudinal momenta of their parents, leading to the ridge
of Δη at Δϕ ∼ π.
Hadron productions in high-energy pp and p̄p collisions

are complex processes. They can be viewed from two
different and complementary perspectives. On the one
hand, there is the successful microscopic description
involving perturbative QCD and nonperturbative hadroni-
zation at the parton level where one describes the detailed
mechanisms of parton-parton hard scattering, the parton
structure function, parton fragmentation, parton showering,
the running coupling constant and other QCD processes
[6]. On the other hand, from the viewpoint of statistical
mechanics, the single-particle distribution may be cast into
a form that exhibits all the essential features of the process
with only three degrees of freedom [11,12,15]. The final
result of the process may be summarized, in the lowest-
order approximation, by a power index n which can be
represented by a nonextensivity parameter q ¼ ðnþ 1Þ=n,
the average transverse momentum mT0 which can be
represented by an effective temperature T ¼ mT0=n, and
a constant A that is related to the multiplicity per unit
rapidity when integrated over pT. We have successfully
confronted such a phenomenological nonextensive statis-
tical mechanical description with experimental data. We
emphasize also that, in all cases, the temperature turns out
to be close to the mass of the pion.
What we may extract from the behavior of the exper-

imental data is that the scenario proposed in Refs. [18,19]
appears to be essentially correct except for the fact that we
are not facing thermal equilibrium but a different type of
stationary state, typical of the violation of ergodicity (for a
discussion of the kinetic and effective temperatures see
Refs. [69,70]; a very general discussion of the notion
of temperature in nonextensive environments can be found
in Ref. [71]). It should be realized however that the
connection between the power law and the nonextensive
statistical mechanical description we have presented con-
stitutes only a plausible mathematical outline and an
approximate road map. It will be of interest in future work
to investigate more rigorously the stochastic parton show-
ering process from a purely statistical mechanical view-
point to see how it can indeed lead to a nonextensive
statistical distribution by deductive, physical, and statistical
principles so that the underlying nonextensive parameters
can be determined from basic physical quantities of the
collision process.
We can discuss the usefulness of our particle production

results in pp collisions in relation to particle production
in AA collisions. In the lowest approximation with no

initial-state and final-state interactions, an AA collision at a
certain centrality b can be considered as a collection of a
binary NbinðbÞ number of pp collisions. These binary
collisions lead first to the production of primary particles.
Successive secondary and tertiary collisions between pri-
mary particles lead to additional contributions in a series:

EpdNAA

dp
ðb; pÞ

¼ NbinðbÞ
EpdNpp

dp
ðpÞ

þ N2
binðbÞ

Z
dp1dp2

dNpp

dp1

dNpp

dp2

EpdNðp1p2 → pX0Þ
dp

þ N3
binlðbÞ

Z
dp1dp2dp3

dNpp

dp1

dNpp

dp2

dNpp

dp3

×
EpdNðp1p2p3 → pX0Þ

dp
þ � � � ; ð58Þ

where EpdNðp1p2 � � � → pX0Þ=dp is the particle distribu-
tion of p after binary collisions of primary particles
p1; p2;…. In addition to the primary products of a single
relativistic hard-scattering EdNpp=dp represented by the
first term on the right-hand side, the spectrum in AA
collisions contains contributions from secondary and
tertiary products represented by the second and third terms.
In the next level of approximation, additional initial-state
and final-state interactions will lead to further modifica-
tions of the ratio RAA ¼ dNAA=½NbindNpp� as a function of
b and pT .
The usefulness of our analysis arises from a better

understanding of the plausible reasons why the products
from the primary pp scattering can be simply represented
by a single nonextensive statistical mechanical distribution
(57). For peripheral collisions, the first term of Eq. (58)
suffices and the spectrum of the AA collision, normalized
per binary collision, would be very similar to that of the
pp collision, as is indeed the case in Fig. 1 of Ref. [72].
As the number of binary collisions increases in more
central collisions, the second term becomes important
and shows up as an additional component of the non-
extensive statistical mechanical distribution with a new set
of n and T parameters in the region of low pT, as discussed
in Refs. [73,74].
As a concluding remark, we note that the data/fit plot

in the bottom part of Fig. 8 exhibits intriguing rough
log-periodicity oscillations, which suggest corrections to
the lowest-order approximation of Eq. (57) and some
hierarchical fine structure in the quark-gluon system where
hadrons are generated. This behavior is possibly an
indication of some kind of fractality in the system.
Indeed, the concept of self-similarity, one of the landmarks
of fractal structures, has been used by Hagedorn in his
definition of a fireball, as was previously pointed out in
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Ref. [21] and found in the analysis of jets produced in pp
collisions at the LHC [75]. These small oscillations have
already been preliminarily discussed in Sec. VIII and in
Refs. [76,77], where the authors were able to mathemati-
cally accommodate these observed oscillations essentially
allowing the index q in the very same Eq. (57) to be a
complex number5 (see also Refs. [78,79]; more details on
this phenomenon, including also a discussion of its
presence in recent AA data, can be found in Ref. [77]).
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